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Abstract

We introduce a new subdivision-surface wavelet transform for arbi-
trary two-manifolds with boundary that is the first to use simple
lifting-style filtering operations with bicubic precision. We also
describe a conversion process for re-mapping large-scale isosur-
faces to have subdivision connectivity and fair parameterizations
so that the new wavelet transform can be used for compression
and visualization. The main idea enabling our wavelet transform
is the circular symmetrization of the filters in irregular neighbor-
hoods, which replaces the traditional separation of filters into two
1-D passes. Our wavelet transform uses polygonal base meshes to
represent surface topology, from which a Catmull-Clark-style sub-
division hierarchy is generated. The details between these levels of
resolution are quickly computed and compactly stored as wavelet
coefficients. The isosurface conversion process begins with a con-
tour triangulation computed using conventional techniques, which
we subsequently simplify with a variant edge-collapse procedure,
followed by an edge-removal process. This provides a coarse ini-
tial base mesh, which is subsequently refined, relaxed and attracted
in phases to converge to the contour. The conversion is designed to
produce smooth, untangled and minimally- skewed parameteriza-
tions, which improves the subsequent compression after applying
the transform. We have demonstrated our conversion and transform
for an isosurface obtained from a high-resolution turbulent-mixing
hydrodynamics simulation, showing the potential for compression
and level-of-detail visualization.

Keywords: Compression Algorithms, Geometric Modeling, Iso-
surfaces, Multiresolution Methods, Wavelets

1 Introduction

Modeling complex geometries, like isosurfaces resulting from
high-resolution turbulent-mixing hydrodynamics simulated on
massively parallel supercomputers, is a challenging problem in sci-
entific visualization. Volumetric data sets are often too large for
efficient exploration of isosurfaces, material boundaries, or shock
waves. Interactive exploration of families of surfaces, such as time-
dependent surfaces or isosurfaces at multiple isovalues, is facili-
tated by compact surface representations that allow fast and selec-
tive access. When storing and transmitting large amounts of data,
compression of the geometry and associated fields becomes an im-
portant application.

Multiresolution representations, like wavelets, are essential to
process large-scale geometries efficiently. They allow the display
of a complete surface model at a low resolution, as well as zoomed
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views at high resolution, using small amounts of computation and
transmission time. If a geometric model can be evaluated locally
and progressively, it is possible to satisfy demand-driven queries,
i.e., providing a maximal amount of detail within a prescribed pro-
cessing time or providing a minimal amount of detail satisfying a
prescribed error bound. Progressive evaluation adaptively increases
the resolution of a geometric model while the data is accessed, with-
out processing the same information twice. The need of multireso-
lution modeling for view-dependent visualization was motivated by
Heckbert/Garland [18].

Applications for multiresolution surface modeling include:

� Computational Physics.Surfaces in large-scale physics com-
putations include isocontours, shock fronts, and material
boundaries derived from volume fractions [3]. Parametric
surface representations are ideal for interactive exploration,
as they offer efficient access to the geometry and correspond
well with the capabilities of current rendering hardware.

� Medical imaging.Surface approximations representing bone
or vessel structures are obtained from contouring algorithms
applied to volumetric data constructed from computer tomog-
raphy (CT) scans. Smooth surface models can be used for
visualizing these structures, identifying diseases and planning
surgery.

� Reverse engineering.Points sampled from a real model–
using, for example, laser range scanners–can be approximated
or interpolated by continuous surface models. These models
facilitate the design of geometry and subsequent numerical
analysis and manufacturing.

In the present paper, we construct a new wavelet transform based
on uniform bicubic B-Spline subdivision and fitting rules that are
generalized to arbitrary polygonal base meshes representing two-
manifold topologies of arbitrary genus. Compared to the previous
smooth subdivision-surface wavelet constructions [28, 29], our ap-
proach requires only fast and local lifting-style filtering operations
rather than global sparse matrix solutions, and thus makes large-
data surface compression feasible. Our surface representation sat-
isfies C2-continuity conditions at any level of resolution, except
at extraordinary points (control points with other than four inci-
dent edges), where the surface is tangent-plane continuous. Our
wavelet construction also includes modifications to support bound-
ary curves and sharp features. Our wavelet transform is structurally
similar to Catmull-Clark subdivision [5], has comparable simplic-
ity, and also produces piecewise-bicubic patches.

Besides the wavelet construction, the contribution of this paper is
a fitting algorithm that converts isosurfaces efficiently to our surface
representation. The fitting algorithm is composed of the following
steps:

� Isosurface extraction: Using common algorithms, unstruc-
tured, triangulated meshes of high resolution are obtained.

� Topology-preserving mesh simplification: Coarse meshes
are obtained using an edge-collapsing/removing algorithm.
These are then used as base meshes providing the domain for
our parametric surface representation.



� Regular mesh refinement and shrink wrapping:The fully
detailed isosurface is obtained by an iterative fitting process
that provides a smooth, high quality parameterization in the
correct form for the wavelet transform.

� Wavelet decomposition:our new transform is applied to the
shrink-wrapped surface to provide multiple resolutions of sur-
face approximation. The differences between resolution lev-
els are compactly stored so that progressive reconstruction
from coarse to fine resolutions is possible.

Since resolution capabilities of scanners as well as performance
of supercomputers are improving rapidly, it becomes increasingly
important to develop efficient modeling tools for highly complex
geometries. B-spline patches alone are no longer sufficient for rep-
resenting these geometries efficiently. Hierarchical representations
are required that progressively provide multiple levels of resolution
and are stored in a compressed form. The level of refinement for
the surface during display should depend on the magnitude of lo-
cal details and on the displayed level of resolution. Our wavelet
transform provides all these capabilities in a highly efficient way.
To demonstrate our method, we have extracted an isosurface from
an extremely high-resolution turbulent-mixing hydrodynamics sim-
ulation [30] and have visualized it at multiple resolutions.

2 Related Work

Wavelet transforms are used in signal processing and numerical
mathematics to analyze functions by separatingdetailscorrespond-
ing to different frequency bands [6, 36]. Details of a certain fre-
quency can efficiently be added or removed to switch between res-
olutions. These details are represented by wavelet coefficients that
typically have small absolute values and can be compressed by
arithmetic coding [31]. Wavelets are thus a useful tool the concise,
progressive transmission of scientific data [38].

An important tool for wavelet construction is thelifting scheme,
described by Sweldens [37]. A similar technique was developed
earlier by Dahmen [7]. Wavelet lifting makes it possible to design
wavelets with certain desirable properties: increased numbers of
vanishing moments, efficient transform computation, and the ability
to implement integer-arithmetic transforms for lossless compres-
sion [4].

Lounsbery [28] showed that wavelets can be constructed for sub-
division surfaces on arbitrary polygonal base meshes such that they
exactly reproduce certain subdivision rules when assuming zero
detail. It is possible to reproduce polynomial splines with cer-
tain properties, like interpolation or variational subdivision [22].
Schröder/Sweldens [34] define a variety of subdivision-surface
wavelets specialized to spherical domains. Piecewise-constant ap-
proaches were further improved by Nielsonet al. [32] and Bonneau
[2]. In contrast to regular subdivision rules, signal processing algo-
rithms for meshes that are irregular on every level of resolution are
described by Guskovet al. [16].

Unfortunately, only few smooth wavelet constructions are known
that work efficiently on domains of arbitrary topology and repre-
sent smooth surfaces. Lounsberyet al. [29] construct wavelets
for Loop’s subdivision [27] and Catmull-Clark surfaces [5]. These
wavelet constructions, however, require the solution of sparse,
global systems of equations and are thus not applicable to large data
sets. Our construction is based on local lifting operations that are
generalized to irregular mesh domains. The number of operations
for computing our wavelet transform is less than twice the number
required for Catmull-Clark subdivision.

In order to apply our wavelet transform to irregular base meshes
refined by regular subdivision, we need to convert surfaces to a
mesh structure that is obtained by recursive subdivision. Therefore,

v

e f

Figure 1: Subdivision schemes. From left to right: Catmull-Clark;
Doo-Sabin; Butterfly/Loop.

we need to construct base meshes and smooth parameterizations
mapping these meshes onto the surface geometry. For surfaces de-
fined by scattered data (unorganized points) in three dimensions,
such algorithms were described by Eck/Hoppe [12] and Guo [15].
Both algorithms build base meshes and fit smooth patches to the
surface regions. Eck/Hoppe use bicubic B-spline patches minimiz-
ing a fairness function and satisfying tangent-plane continuity con-
straints. Guo’s construction is based on C2-continuous blending
surfaces [14]. Another surface fitting scheme for dense polygonal
meshes is described by Krishnamurthy/Levoy [24]. Hoppeet al.
[19] introduce surface reconstruction and fitting with Loop subdi-
vision surfaces, where they extend the Loop rules to include sharp
features.

Surfaces represented by unstructured polygonal meshes can be
converted to a regularly subdivided mesh by multiresolution adap-
tive parameterization of surfaces (MAPS), see Leeet al. [25].
MAPS simplifies a given triangle mesh by recursively removing
a fraction of all vertices and re-triangulating. During this proce-
dure, the original mesh is mapped onto the coarser triangulation.
The coarsest mesh is regularly refined using Loop’s subdivision to
smooth the parameterization and fitted to the original mesh. An al-
gorithm thatshrink-wrapsa mesh to a given surface is described
by Kobbeltet al. [23]. We use a similar shrink-wrapping approach
for surface fitting. However, we are using quadrilateral rather than
triangular subdivision and extend the approach to surfaces of ar-
bitrary genus. To construct a base mesh, we use an edge-collapse
algorithm similar to Hoppe’s progressive meshes [20]. There exists
a variety of mesh-simplification approaches. For an overview of
different methods, we refer to Lindstrom/Turk [26].

3 Bicubic Subdivision-Surface Wavelets

In the following, we introduce an index-free notation for certain
subdivision rules that we use to define our wavelet transform. We
describe our lifted wavelet construction and show how to represent
surface boundaries and sharp features. At the end of this section, we
outline the most important properties of our wavelet construction.

3.1 Subdivision Rules

Subdivision surfaces are limit surfaces that result from recursive
refinement of polygonal base meshes. A subdivision step refines a
submeshto asupermeshby inserting vertices. The positions of all
vertices of the supermesh are computed from the positions of the
vertices in the submesh, based on certain subdivision rules. Most
subdivision schemes converge rapidly to a continuous limit surface,
and a mesh obtained from just a few subdivisions is often a good
approximation for surface rendering. Subdivision surfaces that re-
produce piecewise polynomial patches can be evaluated in a closed
form at arbitrary parameter values [35].

There exists a variety of different mesh-subdivision schemes,
see Figure 1. Catmull-Clark subdivision [5] generalizes bicubic B-
spline subdivision to arbitrary topology. Vertices in the supermesh
correspond to faces, edges, or vertices in the submesh. In the fol-
lowing, we denote the corresponding vertex types asf , e, andv,
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Figure 2: Examples for index-free notation. The pointvf is the
centroid of a face;ve is the midpoint of an edge;fe is the midpoint
of the line segment defined byf vertices;vv is the centroid of all
adjacentv vertices; andfv is the centroid off vertices.
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Figure 3: Catmull-Clark subdivision rules (apply left to right).

respectively. All faces produced by Catmull-Clark subdivision are
quadrilaterals. An interpolating scheme based on the same mesh
structure is described by Kobbelt [21]. Doo-Sabin subdivision [9]
generalizes biquadratic B-splines and uses a supermesh withoutv

vertices that correspond to vertices in a submesh. All vertices pro-
duced by Doo-Sabin subdivision are of the same type and have va-
lence four. Loop [27] introduced a smooth subdivision scheme for
triangle meshes. It producese andv vertices subdividing each tri-
angle into four. An interpolating scheme that uses the same mesh
structure is known asbutterfly scheme[11, 39].

For our wavelet construction, we use the Catmull-Clark subdivi-
sion structure with slightly different subdivision rules. To describe
subdivision rules that determine new vertex positions, we introduce
an index-free notation. We use the averaging operatorxy, wherex
andy can representf , e, orv. This operator returns for every vertex
of typey the arithmetic average of all adjacent vertices of typex. If
there are no direct neighbors of typex, thenxy returns the average
from those vertices of typex that correspond to adjacent primitives,
i.e., adjacent vertices or incident edges or faces. Examples for the
averaging operator are shown in Figure 2.

To provide an example for our index-free notation, we formulate
the Catmull-Clark subdivision rules in algorithmic notation using
thexy operator:

1: f  vf

2: e  1

2

�
ve + fe

�
3: v  1

nv

�
fv + vv + (nv � 2)v

� (3.1)

Here,nv denotes the valence of a vertex. The three rules are il-
lustrated in Figure 3. Thev vertices are initially defined by the
coordinates given by a submesh. The initial values fore andf ver-
tices are irrelevant. The first rule defines eachf vertex to be located
at the centroid of its corresponding face. The second rule defines
eache vertex to be the average of its edge midpointvv and the
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Figure 4: Wavelet decomposition coarsens a control polygon and
stores difference vectors in place of removed vertices.

midpointfe of the two adjacentf vertices. The third rule re-defines
the position for eachv vertex as a weighted sum of its neighboring
f vertices, its adjacent submesh verticesvv, and its own location.
This vertex-modification step is performed simultaneously for all
vertices.

Subdivision rules like these define vertex modifications that are
necessary to determine all supermesh coordinates for an individual
subdivision step. For the next subdivision step, all vertices become
v vertices again, and the same subdivision rules are applied recur-
sively.

3.2 Lifted One-Dimensional Wavelets

A discrete wavelet transform (DWT) can be defined to represent hi-
erarchical uniform B-splines under dyadic refinement [6, 10, 36].
The principle is to decompose a B-spline control polygon repre-
senting a function at a fine resolution into a hierarchy of coarser B-
splines and a set of wavelet coefficients representing the details that
were reduced in each coarsening step. This process is calleddecom-
positionor analysis. Figure 4 illustrates a decomposition step. Ev-
ery second vertex is denoted asv vertex and remains in the coarser
control polygon. The coordinates of av vertex may be modified,
the new point is denoted byv0 (scaling-function coefficient). All
other vertices correspond to edges in the coarser polygon and thus
are denoted ase vertices. The latter are transformed into difference
vectorse0 (wavelet coefficients) defining the details necessary to
reconstruct the finer control polygon.

Decomposition rules for a DWT are defined by two linear oper-
ators, afitting operatorF predicting the vertex coordinates for the
coarser polygon, and acompaction-of-differenceoperatorC repre-
senting the reduced details:

v
0 = F(v;e) and

e
0 = C(v;e):

(3.2)

Decomposition is recursively applied to a coarse polygon until a
base resolution is reached. A DWT thus provides a base polygon
and all individual levels of detail that need to be added recursively
to reconstruct an original polygon. An inverse DWT is defined
by reconstructionor synthesisrules that invert the decomposition
rules. Starting with a base polygon, an inverse DWT applies recon-
struction rules recursively in reverse order of decomposition and
thus adds more and more detail to a polygon. Reconstruction rules
are defined by asubdivisionoperatorS predicting the shape of a
next finer control polygon and anexpansionoperatorE providing
the missing details:

�
v

e

�
= S(v0) + E(e0): (3.3)

To obtain a smooth approximating curve, the reconstruction pro-
cess can be terminated at any level of resolution providing a control
polygon at an intermediate level of detail. The curve is obtained by
applying the subdivision operatorS ad infinitumand assuming zero
detail on all finer levels. In the case of B-spline wavelets, the op-
eratorS reproduces in the limit a B-spline curve with uniform knot



Figure 5: Lifted cubic B-spline wavelet.
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Figure 6: Tensor-product lifting operation on a rectilinear grid. A
one-dimensional lifting operation is applied first to the rows and
then to the columns of a grid.

vector. A B-spline curve can be computed directly from a control
polygon [13].

The reconstruction rules for a cubic B-spline wavelet transform
can be defined in index-free notation as follows:

1: v  v � 3

4
ev

2: e  e + ve

3: v  1

2
v + 1

2
ev

(3.4)

These three vertex modifications representlifting operations for the
DWT. Lifting is used to define the shape of wavelets with cer-
tain properties, like vanishing moments. (We use the term lifting
throughout this paper to denote local operations for computing the
wavelet transform.) The subdivision operatorS is obtained from
these reconstruction rules by assuming zero wavelet coefficients
e
0. The operatorS reproduces dyadic B-spline subdivision [6, 10].

Vertices of typee0 andv0 represent coefficients for wavelets and
B-splinescaling functions, respectively. A cubic B-spline wavelet
obtained from our construction is depicted in Figure 5.

To construct the corresponding decomposition rules we invert
the three individual lifting operations in reverse order. The decom-
position rules are defined as:

1: v  2v � ev

2: e  e � ve

3: v  v + 3

4
ev

(3.5)

3.3 Wavelets on Polygon Meshes

In the special case of a rectilinear mesh, a tensor-product DWT
is defined by performing a one-dimensional DWT for all rows and
then for all columns of the mesh. The corresponding tensor-product
approach for the first lifting operation of the reconstruction rules
(3.4),

v  v � 3

4
ev (3.6)

is illustrated in Figure 6. We note that the tensor-product lifting
scheme also involvesf vertices and thate vertices act likev vertices
for exactly one direction.

The fundamental observation that makes our lifting approach
possible is that this tensor-product lifting operation can be com-
puted by modifyinge vertices andv vertices separately, see
Figure 7. This formulation does not require vertex valences to be
four, and it is thus applicable to arbitrary polygonal base meshes.
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Figure 7: Same tensor-product lifting operation as in Figure 6,
applied to arbitrary polygonal meshes.

A generalized tensor-product lifting operation for equation (3.6) is
defined by the rules

e  e � 3

4
fe

v  v � 9

16
fv �

3

2
ev

(3.7)

Due to the averaging operators, the total weight added to an in-
dividual vertex remains independent of its valence. This property
ensures that the shapes of basis functions near extraordinary points
are close to the shapes of corresponding basis functions on regular
domains.

Analogously to the first reconstruction rule in (3.4) the two re-
maining rules can be generalized to arbitrary polygonal meshes.
This is the entire set of reconstruction rules for the lifted general-
ized bicubic DWT:

1: e  e � 3

4
fe

2: v  v � 9

16
fv �

3

2
ev

3: e  e + ve

4: f  f � vf + 2ef

5: e  1

2
e + 1

2
fe

6: v  1

4
v � 1

4
fv + ev:

(3.8)

This reconstruction formula defines linear subdivision and expan-
sion operators, given by

0
@ve
f

1
A = S(v0) + E(e0; f 0): (3.9)

On a rectilinear grid, the subdivision operatorS reproduces bicu-
bic B-splines (scaling functions) as limit surfaces when no detail
is added,i.e., when all wavelet coefficientse0 andf 0 are zero. On
arbitrary polygonal base meshes, the subdivision scheme behaves
similar to Catmull-Clark subdivision.

The corresponding decomposition rules are defined by inverting
the rules (3.8) in reverse order:

1: v  4v + fv � 4ev

2: e  2e � fe

3: f  f + vf � 2ef

4: e  e � ve

5: v  v + 9

16
fv + 3

2
ev

6: e  e + 3

4
fe

(3.10)

In analogy to equation (3.2), these decomposition rules define linear
fitting and compaction-of-difference operators, given by

v
0 = F(v;e; f) and�
e
0

f
0

�
= C(v;e; f):

(3.11)



Our DWT is now applied as follows: a polygonal base
mesh defining a surface topology is recursively subdivided using
Catmull-Clark subdivision structure until a prescribed resolution is
obtained. A mapping between the fine mesh and the geometry that
needs to be represented is established. Coordinates for each mesh
vertex are estimated so that the fine mesh (and the limit surface ob-
tained byS) approximates the geometry closely. Algorithms for
these steps are described in the next sections. The actual input for
our DWT is a hierarchical mesh structure with associated vertex co-
ordinates at the finest subdivision level. Decomposition rules (3.10)
are applied recursively from fine to coarse until the base mesh is
obtained. The latter now contains control points for the geometry
at coarsest resolution. The wavelet coefficients corresponding to
vertices on any finer subdivision level contain surface details. A
control mesh represents, at any resolution, a smooth generalized
bicubic B-spline surface.

3.4 Boundary Curves and Feature Lines

Boundary curves andsharp feature linesneed to be treated differ-
ently in the wavelet scheme in order to avoid a large number of
non-zero wavelet coefficients and to predict coarser levels of reso-
lution more precisely. Feature lines for subdivision surfaces were
described for Loop subdivision by Hoppeet al. [19], and for other
subdivision schemes by DeRoseet al. [8] and Zorinet al. [40].
Boundaries and features correspond to marked edges in the base-
mesh that are subdivided like B-spline curves defined byv- ande
vertices. It is also possible to definesharp verticesthat cannot be
modified by any subdivision rule. (To improve the surface quality
in the neighborhood of sharp vertices, adjacent edges are treated
like sharp edges.)

To handle sharp edges and vertices correctly, our subdivision op-
eratorSmust apply one-dimensional subdivision rules for allv and
e vertices belonging to sharp edges and it must not modify sharp
vertices. Therefore, our reconstruction rules (3.8) need to be modi-
fied in the following way:

� For anye vertex located on a sharp edge or belonging to an
edge with a sharp vertex, the first and fifth rules are ignored.

� For any sharpv vertex, the second and sixth rules are ignored.

� For anyv vertex that has incident sharp edges and that is not
sharp itself, the second and sixth rules are replaced by

2: v  v � 3

4
ev and 6: v  1

2
v + 1

2
ev:

For both rules, the averageev is computed from only thosee
vertices that correspond to sharp edges.

The decomposition rules (3.8) are modified analogously.

3.5 Subdivision and Fitting Properties

The four linear operatorsS,E,F, andC correspond to non-square
matrices that can be multiplied with corresponding sets of control
points or wavelet coefficients. Considering that our wavelet trans-
form has an inverse, it holds thatFS andCE are identity matrices.
Since the subdivision operatorS can reproduce every bicubic poly-
nomial on a regular (rectilinear) control mesh, the fitting operator
F has bicubic precision as well. This implies that all wavelet coef-
ficients are zero when representing a bicubic polynomial. We note
thatF does not interpolate certain surface points, but that it closely
approximates the finer levels of resolution. Interpolation constraints
often introduce unwanted “wiggles” to curves and surfaces.

A property of the subdivision operatorS is that it produces limit
surfaces with tangent-plane continuity at extraordinary points. This

can be shown by exploring a square sub-matrix ofS transform-
ing a local set of control points around an extraordinary vertex into
another set of points with the same local mesh topology. Eigen-
analysis of this matrix characterizes the limit behavior at the ex-
traordinary point,i.e., the surface limit and its normal can be com-
puted analytically from the eigenvectors. Our subdivision scheme
falls into a class of generalized Catmull-Clark schemes for which
the eigenvalues and eigenvectors of a local subdivision matrix have
been evaluated by Ball/Storry [1]. A proof of tangent-plane conti-
nuity is provided by Peters/Reif [33].

Our subdivision scheme generates polynomial patches satisfy-
ing C2-continuity constraints in all regular mesh regions. Except
for extraordinary points, all surface regions become regular after
a sufficient number of subdivisions. Around every extraordinary
point there is an infinite number of smaller and smaller patches.
However, it is possible to compute the limit-surface efficiently at
arbitrary parameter values based on eigenanalysis of subdivision
matrices [35].

4 Surface Fitting

Using the wavelet construction described previously, we can effi-
ciently compute detail coefficients at multiple levels of surface res-
olution when a base mesh and control points on the finest subdi-
vision level are given. In order for the transform to apply to an
arbitrary input surface, the surface must be re-mapped to one with
subdivision connectivity. In this section we introduce an efficient
algorithm to construct base meshes and to subdivide and fit them
to an isosurface. Our approach begins with the high-resolution, un-
structured triangulation obtained by conventional contour extrac-
tion methods. This triangulation is simplified to form an initial
coarse base mesh, which we subsequently subdivide and shrink-
wrap to fit the input triangulation with a smoothly-parameterized
mapping that helps minimize wavelet coefficient magnitudes and
thus improves compression efficiency.

4.1 Constructing Base Meshes

We construct a initial base mesh by performing a variant on edge-
collapse simplification due to Hoppe [20], followed by an addi-
tional pass that removes some edges while keeping the vertices
fixed. This class of simplification method works on triangulations
(manifold with boundary), and preserves the genus of the surface,
resulting in polygonal meshes. We constrain the simplification to
produce polygons with three-, four- and five-sided faces, and ver-
tices of valences from 3 to 8. These constraints result in higher qual-
ity mappings and compression efficiency, since very low or high
degree vertices and faces cause highly skewed or uneven parame-
terizations in the subsequent fitting process.

Our variant on edge-collapse simplification uses a fast priority
queue implemented using bucket sorting, where within each bucket
of priorities the legal edge collapses are listed in first-in-first-out
order. Collapses are performed on the highest-priority legal edge,
iterating until no legal collapses are possible or a target vertex count
is met. We mark an edge as legal to collapse if the rules from [20]
and certain additional constraints hold. We ensure that valences on
any new vertex are in the rangef3; : : : ; 8g (valence 2 is allowed for
boundary vertices). We disallow collapses on edges with two sharp
vertices. The new vertex formed by the edge collapse is located at
the edge center if neither edge vertex is sharp. In the case where
one edge vertex is sharp, it becomes the new vertex. The general
configuration is shown in Figure 8.

Collapsing edgevivj decreases by one the valence of vertices
a andb belonging to incident triangles as shown in Figure 8 and
replacesvi andvj by a single vertexv of valenceNi + Nj � 4,
whereNi andNj are the valences ofvi andvj , respectively. We
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Figure 8: Collapsing edgevivj modifies the triangulation in the
shaded region. The error estimates for all edges shown are updated.

check the valences thata, b andv would have after collapse using
these formulas to enforce the desired constraints.

The error function used in our mesh-collapse algorithm is sim-
pler than Hoppe’s and does not require evaluating shortest distances
of a dense sampling of points to the finest mesh every time an edge
is updated. It was demonstrated by Lindstrom and Turk [26] that
memoryless simplification can provide results at least as good as the
methods of Hoppe and others but without expensive metrics com-
puted with respect to the original fine mesh. The priority computa-
tion we have developed has some similarity in spirit, but has been
re-formulated in response to experience attempting to optimize the
subsequent fitting process and resulting mappings. We feel it is im-
portant to test the volume-preserving aspect of the Lindstrom-Turk
edge collapses in future work, since this has the potential to reduce
some artifacts encountered in especially aggressive reductions (e.g.,
> 50 times reductions for the turbulence contours we examine).

The priority for an edge collapse is computed as follows. Let
ci be the vectors obtained by taking cross products of consecutive
vectors associated with the ring of edges adjacent to the new vertex
after collapse. Thenni = ci=kcik2 are the unit normals to the
triangles forming a ring around the new vertex. The unit average
normal isn = 1=k

Pk�1

i=0 ni. The error introduced by an edge
collapse is estimated by

�E0 = max
i=0;::: ;k�1

����d2 � ni

���� (4.1)

whered = vj � vi. In order to allow priority distinctions in
skewed/tangled planar neighborhoods, we clamp�E0 to a small
positive value by�E1 = maxf�E0; 10

�8g. Errors in higher-
curvature or tangled neighborhoods are emphasized by a weighting
factor, giving the final delta in error energy as

�E =

�
2�

min ci � n

maxkcik2

�
16

�E1 (4.2)

We keep an estimate of accumulated error for each edge neighbor-
hood,Eacc. The original edges are initialized with zero accumu-
lated error. The total error for an edge is defined as

E = Eacc+�E (4.3)

When an edge is collapsed, the accumulated error for any edge ad-
jacent to the new vertex is set to the maximum of its previous value
Eaccand the valuesE for the five old edges destroyed by the col-
lapse. The priority of a collapse is given bylog(1=E). This value
is discretized, for example, to about105 buckets within a maximum
expected range of[log 10�10; log 1010], to give a bucket index.

Upon collapse, a neighborhood of nearby edges must have their
legality markings and priorities updated. These edges are: (a) those
adjacent to the new vertex or to the two old vertices remaining
from the triangles that collapsed to edges, and (b) the ring of edges

formed between consecutive outer endpoints of the edges in (a).
The complete stencil of edge updates is shown in Figure 8.

To improve the vertex and face valences of the base mesh, we
delete some edges that satisfy certain constraints, in a priority-
queue order. An edge is eligible for deletion if its incident vertices
both have valences at least four, and if the resulting merged face has
no more than five sides. Sharp edges are never eligible for deletion.
If the unit normals of the faces on either side of the edge have a dot
product less that a specified threshold, for example:5, then we also
make the edge ineligible for removal. The priority for removal is
formulated to be higher when the new face has four sides, when the
two faces being combined have similar normals, and when high-
valence vertices (valence> 4) are on the ends. Removal priority
is lower when the new face has more than four sides, when the two
combining faces have disparate normals, and when the edge’s ver-
tices have valence 4.

4.2 Isosurface Fitting

Given the initial base mesh from the edge collapse and removal pro-
cedures, a refinement fitting procedure is the final step in converting
the contour surface to have subdivision-surface connectivity, a fair
parameterization, and a close approximation to the original unstruc-
tured geometry. Our method is inspired by theshrink-wrapping
algorithm by Kobbeltet al. [23], which models an equilibrium be-
tweenattracting forcespulling control points towards a surface and
relaxing forcesminimizing parametric distortion. We iterate the at-
traction/relaxation phases a few times at a given resolution, then
refine using Catmull-Clark subdivision, repeating until a desired
accuracy or resolution is attained. Relaxation is provided by a sim-
ple Laplacian averaging procedure, where each vertex is replaced
by the average of its old position and the centroid of its neighbor
vertices. Relaxation for a vertex adjacent to two sharp edges only
weights the adjacent vertices on those edges. Sharp vertices are
not relaxed. The remainder of this section describes the attraction
method.

For attraction, vertices are moved to the actual isosurface along
a line defined by the unit average normal of the faces adjacent to
the vertex in the current shrink-wrap mesh. The location chosen
along this line is determined by use of a signed-distance field for
the original contour surface. We choose the current-mesh normal
direction to ensure that samples spread evenly over the surface, es-
pecially for high-curvature features. The even spread is facilitated
by the mesh relaxation procedure. The signed-distance field is used
to help locate the best attraction point because it is a reliable indica-
tor of which way to move and how far, and can help disambiguate
between near isosurface locations by selecting the one facing a di-
rection that most agrees with the mesh normal. The scalar field
itself, while available a no additional space or time cost, is gener-
ally not reliable for these things. We move to the nearest isosurface
along the mesh-normal line that has a contour normal facing in the
same direction (the dot product of the two normals is positive). If
the distance to this location is greater that a specified threshold, then
the point is left where it was until further iterations/refinements pro-
vide a sensible target location.

We briefly outline the algorithm we use for computing the
signed-distance field for the contour. If the scalar field is defined
on a regular hexahedral grid, we use the same grid for the signed-
distance function. The sign for our distance function can be ob-
tained from the underlying scalar field while estimating the dis-
tance to the isosurface involves more work. Our algorithm creates
a breadth-first queue of “updated” nodes in the grid, initialized to
include the grid nodes for cells containing isosurface, using the the
isolevel, scalar value and scalar-field gradient to estimate these ini-
tial distances. Each queue entry contains the node index and coor-
dinates of the closest surface point found so far for that node. The



first entry on the queue is removed, and all its neighbors are checked
to see if they need to be updated. A neighbor is updated if the re-
moved nodes closest point is closer that its closest point. Updating
involves replacing the coordinates of the closest point, placing the
neighbor at the end of the queue, and storing the new distance in
the distance field for the neighbor’s node. The queue processing
continues until the queue is empty. Typically each node gets up-
dated only a few times, resulting in very fast computation of the
signed-distance field.

We note that an isosurface of a signed-distance function will have
slight differences from the original extracted isosurface, hence the
fitting process will converge to a slightly different surface than may
be desired. This can be optionally corrected after fitting, by mov-
ing the vertices in the scalar-gradient direction to the exact isosur-
face. This is possible after the fitting process because the points
are within a fraction of a cell width from the exact surface and the
scalar field is reliable when in that proximity.

5 Results

To demonstrate the performance of our algorithm, we have ex-
tracted an isosurface from a block of a high-resolution turbulent-
mixing hydrodynamics simulation [30], converted it into our sur-
face representation and displayed different levels of resolution.
Starting with a block of256 � 256 � 384 samples, we have con-
structed an isosurface mesh composed of 976,321 vertices. This
mesh has been simplified to a base mesh with only 19,527 vertices.
We have used three subdivision steps for the shrink-wrapping pro-
cess and obtained a fine-resolution mesh composed of 1,187,277
vertices, which corresponds to the total number of control points
and wavelet coefficients. We obtained computation times of 12
minutes for base mesh generation, about one minute for the shrink-
wrapping step, and 30 seconds for computing the wavelet transform
on a 250 MHz MIPS R10000 processor.

No. of coefficients Percent of full resolution RMSE [%]
237,490 20.0 7.6
118,728 10.0 20.5
59,364 5.0 41.7
19.527 1.6 71.3

Table 1: Root mean square errors in percent of edge length of vol-
ume cell for reconstructions from subsets of coefficients.

Assuming that the control points of the shrink-wrapped mesh in-
terpolate the isosurface, we can estimate the root mean square error
(RMSE) for a mesh reconstructed from only a subset of coefficients
by using differences between control points at finest resolution. Er-
ror estimates are shown in Table 1. The errors are computed in
percent of the edge length of one volume cell. The main diagonal
of the entire block is about 528 edge lengths. The coarsest res-
olution possible can be obtained by reconstruction from the base
mesh, which corresponds to 1.6 percent of the full resolution. We
note that every wavelet coefficient is a vector-valued quantity with
three components.

The color plate shows the base mesh with interpolating control
points and different levels of resolution from two different points of
view. All figures are rendered at a mesh resolution corresponding to
three subdivision levels (same resolution as obtained from shrink-
wrapping) using flat shading.

6 Future Work

We have introduced a powerful multiresolution modeling tool for
highly detailed surfaces of arbitrary topology and described an al-

gorithm to convert large-scale isosurfaces into this parametric rep-
resentation. Future work will be directed at constructing a wider
range of lifted biorthogonal wavelets, including smooth interpolat-
ing schemes that are efficiently generated by generalizing local lift-
ing operations to arbitrary base mesh topology. It is also desirable
to incorporate local topology changes into the wavelet transform,
which would provide more flexibility in the choice of base meshes
and increase the number of resolution levels. We plan to improve
the shrink-wrapping algorithm to detect local topology changes and
to handle them appropriately.
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(a) Base mesh (side view) (b) Full resolution (bottom view)
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